Osoba odpowiedzialna za przedmiot: prof. dr hab. inż. Michał Malinowski

 

Streszczenie
Celem wykładu jest zapoznanie studentów z zaawansowanymi układami optyki zintegrowanej i ich wykorzystaniem w procesie przetwarzania informacji. Przewaga systemów fotonicznych nad elektronicznymi wynika z wyższej częstotliwości promieniowania optycznego, możliwości równoległego przetwarzania sygnału oraz wykorzystania kwantowej natury fotonów. Efekty kształcenia obejmują znajomość podstaw fizycznych oraz sposobów realizacji optycznych elementów logicznych i pamięciowych w postaci objętościowej i planarnej. Ponadto znajomość takich zagadnień jak: przełączanie i modulacja z wykorzystaniem optycznych efektów nieliniowych, mikro-rezonatory optyczne, bistabilność optyczna oraz połączenia optyczne. Wynikiem zaliczenia przedmioty będzie też opanowanie tematyki analogowego i cyfrowego przetwarzania sygnału optycznego i znajomość architektury procesora optycznego.

Treść wykładu
  1. Wstęp, foton i elektron jako nośniki informacji, fala świetlna, komunikacja światłowodowa, optyczne przetwarzanie informacji. Teoria falowa propagacji promieniowania w planarnych i paskowych falowodach dielektrycznych i półprzewodnikowych. Równanie charakterystyczne światłowodu planarnego. Klasyfikacja modów światłowodu planarnego. (4h)
  2. Fale niejednorodne. Teoria modów sprzężonych, równania modów sprzężonych, droga sprzężenia i transfer mocy. Tunelowanie optyczne. (2h)
  3. Sprzęgacze siatkowe, klasyfikacja siatek, warunek dopasowania fazowego sprzężenie współliniowe, sprzężenie pomiędzy modami TE -TE i z konwersją modów. (2h)
  4. Mikrorezonatory optyczne, zwierciadlane (F-P), fotoniczne (PBG) oraz wykorzystujące całkowite wewnętrzne odbicie. Mody typu WGM w rezonatorach dyskowych i pierścieniowych. (2h)
  5. Przełączanie i modulacja optyczna. Optyka nieliniowa, efekt elektrooptyczny, akustooptyczny, absorpcja dwufotonowa, wymuszone rozpraszanie Ramana, mieszanie 4 fal, optyka fotorefrakcyjna, efekt Franza-Kiełdysza (elektroabsorpcja), kwantowy efekt Starka w studniach kwantowych QCSE. Planarne modulatory optyczne wykorzystujące wzmacniacze półprzewodnikowe (SOA) i układy interferometryczne. (4h)
  6. Połączenia optyczne, zależne i niezależne. Elementy zmieniające kierunek propagacji modów falowodowych- planarne pryzmaty, soczewki geodezyjne, soczewki fresnelowskie, soczewki siatkowe, siatki ogniskujące, zwierciadła, siatki odbiciowe, polaryzatory planarne. Modulatory przestrzenne (SLM), komputerowo generowane hologramy i siatki fazowe. (2h)
  7. Bistabilność optyczna, absorpcyjna, dyspersyjna i polaryzacyjna. Modulatory i przełączniki bistabilne, fotoniczne i hybrydowe. Elementy SEED (self elektro-optic effect device) (2h)
  8. Materiały i technologie wytwarzania zintegrowanych układów fotonicznych (Photonic Integrated Circuits PIC). Przykłady realizacji na bazie niobianu litu LiNbO3 i materiałów półprzewodnikowych (2h)
  9. Optyczna transformata Fouriera, funkcje splotu i korelacji. Koherentne przetwarzanie sygnałów optycznych, filtracja optyczna, optyczne rozpoznawanie obrazów, procesor optyczny w konfiguracji "4f". (2h)
  10. Analogowe i cyfrowe optyczne przetwarzanie informacji. Przykłady elementów optycznych realizujących funkcje logiczne, bistabilne, sprzężeniowe, elementy holograficzne. Systemy optyczne wykonujące operacje na macierzach. Procesory algebry liniowej, rozwiązywanie parabolicznych równań różniczkowych cząstkowych metodami optycznymi. (4h)
  11. Przykłady pamięci optycznych - pamięci optoelektroniczne i pamięci holograficzne. Elementy i architektura komputera optycznego, procesory optyczne. (4h)