Osoba odpowiedzialna za przedmiot: prof. dr hab. inż. Michał Malinowski

 

Streszczenie
Celem wykładu jest poznanie najważniejszych metod badania i charakteryzacji materiałów i struktury elektronicznych i fotonicznych, opartych na oddziaływaniu różnego rodzaju promieniowania z materią. Zróżnicowane techniki spektroskopowe stosuje się powszechnie w chemii, fizyce, astronomii i innych obszarach w celu uzyskania różnorodnych informacji o badanej substancji, począwszy od składu atomowego, przez budowę chemiczną, aż po strukturę jej powierzchni. Tematyka wykładu obejmować będzie poznanie najważniejszych metod spektroskopowych: zjawisk, na których są oparte, technik eksperymentalnych oraz zastosowań.

Treść wykładu
  1. Promieniowanie elektromagnetyczne. Oscylatorowy model materii. Oddziaływanie promieniowania EM z materią, absorpcja, emisja spontaniczna i wymuszona, szerokość linii widmowej. Emisja i absorpcja oscylującego dipola, moment przejścia, reguły wyboru, siła oscylatora. Przejścia oscylacyjno - rotacyjne. Efekty nieliniowe. (4)
  2. Definicja i rodzaje spektroskopii, widmo spektroskopowe. Spektroskopia w zakresie ultrafioletu, widzialnym i podczerwieni. Jednostki energetyczne i fotometryczne. Źródła światła i podstawy działania laserów. Lasery do zastosowań spektroskopowych. (2)
  3. Oprzyrządowanie, metody dyspersji światła - monochromatory i detektory, spektrometry i fluorymetry, technika heterodynowa. Aparatura do rejestracji widm absorpcyjnych w podczerwieni, spektrometry podczerwieni, spektrometry z transformacją Fouriera. Podstawowe informacje o pracy z wysoką próżnią i niskimi temperaturami. (1)
  4. Spektroskopia transmisyjna/absorpcyjna, emisyjna i odbiciowa. Układy optyczne i aparatura i ich charakterystyka. Widma emisji i wzbudzenia. (1)
  5. Techniki impulsowe, zasada, rozdzielczość czasowa. Metody pikosekundowej i femtosekundowej spektroskopii rozdzielczej w czasie. Zliczanie fotonów z korelacja czasową (TCSPC), aparatura i przykłady zastosowań, widma rozdzielcze w czasie. Pomiary czasów życia stanów wzbudzonych - detekcja fazy i modulacji; porównanie z metodą TCSPC. (1)
  6. Spektroskopia nieliniowa, spektroskopia dwufotonowa i nasyceniowa, konwersja wzbudzenia, efekty kooperatywne. Spektroskopia mieszania czterech fal (4WM). Techniki typu wiązka pompująca-wiązka sondująca. (pump-probe), absorpcja przejściowa, femtosekundowy optyczny efekt Kerra, echo fotonowe. (1)
  7. Spektroskopia laserowa wysokiej rozdzielczości, technika zawężania linii widmowej (FLN) i wypalania dziur (hole burning). Polaryzacja (anizotropia) wzbudzenia i emisji - pomiary w fazie ciekłej i w szkliwach; analiza przejść absorpcyjnych na podstawie widm anizotropii wzbudzenia. (1)
  8. Zastosowanie spektroskopii optycznej do charakteryzacji ośrodków laserów na ciele stałym i materiałów półprzewodnikowych. Zastosowanie spektroskopii w podczerwieni do charakteryzacji i określenia struktury molekuł. (1)
  9. Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy (1)
  10. Nieelastyczne rozpraszanie światła: podstawy fizyczne zjawiska nieelastycznego rozpraszania światła; spektroskopia Ramana jako narzędzie badań strukturalnych i metoda analizy chemicznej w nanoskali. Spektroskopia ramanowska w badaniach powierzchni, powierzchniowo wzmocniona spektroskopia Ramana (SERS) (2)
  11. Spektroskopia absorpcyjna promieni X: techniki eksperymentalne, promieniowanie synchrotronowe i jego właściwości; lasery na swobodnych elektronach. (2)
  12. Struktura subtelna widm absorpcji jako źródło informacji o lokalnej struktury atomowej i elektronowej materiałów (XANES, EXAFS), zastosowania w fizyce, chemii i inżynierii materiałowej. (3)
  13. Fluorescencja rentgenowska i jej zastosowania do analizy chemicznej. (2)
  14. Spektrometria magnetycznego rezonansu jądrowego (NMR): podstawy teoretyczne, aparatura; wykorzystanie widm NMR do ustalania budowy cząsteczek od małych cząsteczek do makromolekuł; spektrometria NMR w medycynie i innych dziedzinach wiedzy. (4)
  15. Spektrometria mas: podstawowe pojęcia spektrometrii mas; budowa spektrometru mas; wybrane metody analizy jonów i metody jonizacji; podstawy interpretacji widm masowych, sprzężenie spektrometrii mas z chromatografią gazową i cieczową. (4)